Acros the exemplary husband a biblical perspective study guide

Bike Brand: 
Bike Category: 
Road
the exemplary husband a biblical perspective study guide
LINK 1 ENTER SITE >>> Download PDF
LINK 2 ENTER SITE >>> Download PDF


File Name:the exemplary husband a biblical perspective study guide.pdf
Size: 2595 KB
Type: PDF, ePub, eBook
Category: Book
Uploaded: 27 May 2019, 15:10 PM
Rating: 4.6/5 from 816 votes.

Status: AVAILABLE


Last checked: 16 Minutes ago!

In order to read or download the exemplary husband a biblical perspective study guide ebook, you need to create a FREE account.

Download Now!

eBook includes PDF, ePub and Kindle version



✔ Register a free 1 month Trial Account.
✔ Download as many books as you like (Personal use)
✔ Cancel the membership at any time if not satisfied.
✔ Join Over 80000 Happy Readers


the exemplary husband a biblical perspective study guide

Think about it: you came up with a plan of action for your rebuild before even turning a single wrench. You acquired the tools that were needed for the project, then set about the dirty process of engine disassembly. You then inspected your engine parts, selected others to purchase, and had machine work performed on many of them. You cleaned all components and then verified proper fitment of all parts during pre-assembly (not to mention took care of any issues that may have arisen during that process). For a comprehensive guide on this entire subject you can visit this link: You can copy and paste this link to share: The good news is that we’re on easy street from here on out, and though it may sound ironic, you’ll probably find the final engine assembly process downright simple in comparison to some of the tasks you’ve performed thus far. Not that this is a time to completely relax; a great amount of care and attention to detail is still required. Nonetheless, chances are that this is the phase of your rebuild project you will enjoy the most, as all the hard work you’ve done thus far will, at long last, begin to pay off! Before beginning final assembly, you should have all of the applicable tools listed in Chapter 2 in hand and ready to use—read through this chapter first to see which ones you will need if you’re unsure. Also, it should go without saying that before getting started, you should have performed all applicable pre-assembly procedures listed in Chapter 7 and had any and all additional machine work performed on your parts, as appropriate. And even though you went through the component cleaning process (Chapter 6) before embarking on pre-assembly, you will need to have cleaned all of your engine components one last time before embarking on final assembly. Remember, contamination left on parts can ruin your engine!

http://dissanna.com/temp/fckeditor/dell-storage-manager-manual.xml

    Tags:
  • the exemplary husband a biblical perspective study guide, the exemplary husband a biblical perspective study guides, the exemplary husband a biblical perspective study guide pdf, the exemplary husband a biblical perspective study guidelines, the exemplary husband a biblical perspective study guide answers.

Without further ado, they are: Though a thick engine oil is acceptable to use on bearing surfaces, additional protection can be had with a specialized assembly lubricant designed with bearings in mind. Another type of assembly lube is so-called high-pressure lube, which is designed to be applied at points where significant friction occurs, such as the pushrod cups of rocker arms (this stuff is sometimes moly-based and is usually included with aftermarket rocker arms). Use of all the right lubrication in all the right places will ensure a trouble-free break-in and long life for your LS. Also note that the term “assembly lube” can also apply to the lubricants used on the threads of some aftermarket fasteners, and as mentioned previously, small packages of this stuff are normally included by the fastener manufacturer. Refer to the product information for any assembly lubricants you pick up so that you’re familiar with the approved uses of each before applying. The Royal Purple assembly lube at top right “bridges the gap” between bearing lube and high-pressure lube, and can be used on both types of surfaces. Finally, fastener assembly lube (bottom left) assists in achieving proper torque readings, and this stuff is nearly always moly-based. Usages range from lubrication of certain fasteners (for proper tightening) to coating of surfaces like cylinder walls, lifters, and cam lobes. Thicker-weight conventional oils such as SAE 30 are preferred. Do not use thin weight oils such as 5W-30: a thick enough layer of it may not cling to metal surfaces between now and startup. Also, despite what you may have heard about GM putting together some of its high-output LS engines using synthetic oils, they are not recommended for our purposes. A small set of brushes is another option, as we talked about in Chapter 7. Each of these will prevent loosening over time and unwanted fluid seepage, respectively.

http://www.ez-qc.com/uploads/file/dell-studio-1535-motherboard-manual.xml

Note that while you should pick up some anti-seize compound, this stuff should only be used on spark plug threads. Fortunately, modern gasket technology means that only a few dabs are needed when bolting together an LS, so a small tube is all you’ll need. Parts organizer trays are great because not only do they make items less likely to fall off of your worktables, but they keep numbered parts in order, helping prevent inadvertent mixups of cylinder-specific items like pistons and rods. But you’ll also need to make sure they stay that way as your engine comes together. Hand cleaner should be kept nearby to clean your paws frequently during assembly. Some of the usual cleaning supplies we’ve seen before will be needed as well, particularly assembly wipes (which should always be used unless otherwise specified), which will allow you to give the surfaces of engine parts one last wipe before they’re hidden inside your LS forever. The life of your LS depends on it. You may also consider wearing disposable rubber gloves during the final assembly process. You will need to have all fastener tightening specs—torque, torque angle, bolt stretch, etc.—ready and verified before beginning. The reason for this is that although we’re quoting typical GM specs in this chapter, you must always use the specifications supplied by the manufacturer when using aftermarket fasteners (as well as any special instructions supplied with any aftermarket parts). Do not apply lubricants, sealants, or threadlocker to any fasteners unless specified herein or by the fastener manufacturer. In addition, the final caveat is that since there are so many variants of the LS engine architecture (a pool which continues to increase by the model year), it would be impossible to guarantee that all fastener tightening specs quoted herein are correct for each and every LS engine.

https://www.thebiketube.com/acros-boss-gt-6-manual-german

We will attempt to note any such differences as we go along, but it doesn’t hurt to have your GM service manual at hand to verify or look up values unique to your engine. Install any and all block plugs of the screw-in type, including oil gallery and coolant plugs. You should have noted where they all came from during disassembly. All of these are safe to reuse if their sealing washers are in good condition, but be sure to use Teflon-based thread sealant on the threads and under the sealing washer (new plugs include sealant on them). Torque this style of plug to 44 ft-lbs, or 30 ft-lbs if one of these plugs is an engine block heater. Apply medium-strength threadlocker to its circumference, and tap it in place using a flathead punch or similar instrument. Its outer lip should be recessed about 0.01 inch when fully installed. At this time, also install the rear oil gallery plug (a.k.a. barbell restrictor; use of a new one is strongly recommended). This item can simply push into place by hand, and will protrude just slightly when installed properly. Use no sealant on this plug, just make sure its O-ring is intact and lightly lubricated with engine oil. The upper main bearing shells (grooved) must now be installed into the engine block and the lower main bearing shells (solid) into the main caps. If you established the need to make one or more of these bearing shells undersize or oversize during pre-assembly, ensure each is being installed in its correct location. Each shell has a tab that fits into a recess in the cap or block, preventing backward installation (finger pointing in second photo). Make sure each shell is fully seated with its edges flush with those of the block or main cap—crooked bearings could spell disaster. Also ensure that your main cap locating dowels are in place in the block at this time (only certain engines have these; for example, the LS7). Lubricate the upper main bearing shells. Spread some lube on the crank’s main journals, too.

http://petroenterprise.com/images/95-toyota-corolla-manual.pdf

Now, grasping the crankshaft by the snout and rear flange, slowly lower the crank into the block. Use care not to nick any of the crank journals. Just as the crank is about to rest on the bearings, it may get stuck; slight adjustments in angle of the crank will likely be needed to get it to seat, as it will only go in just the right way. If gentle wiggling does not coax the crank to seat, pull the crank slowly upward and start over; excessive jostling will damage the crank journals or bearings. It may help to rotate the crank slightly as you lay it in. The caps likely will not seat fully by hand, as remember they are a tight fit between the deep-skirt oil pan rails. Insert the M10 main cap bolts and start them by hand. To guide the caps down, alternate tightening the bolts side-to-side to ease each cap all the way into place (don’t do this on caps that use locating dowels—tap the cap in place with a rubber mallet). The longer, non-studded main bolts go toward the center of each cap, while the studded ones go toward the outside. Only snug these bolts for now, then install the side cap bolts loosely. If you are re-using your old side bolts, apply some RTV sealant under the heads to prevent oil leakage. This is only permissible because these bolts use the torque-plus-angle method; doing this would destroy a proper reading if relying on a torque spec only! Before proceeding further, you must use a rubber mallet to hit the crank rearward, then forward, with a rubber mallet. This aligns the thrust bearing surfaces and it is important to note that final thrust of the crank must be in the forward direction. Then use your torque angle gauge to twist these inner main bolts in sequence an additional 80 degrees. (See “Utilizing Fastener Stretch” on page 118 for reasons why this “torque plus angle” methodology is used by GM.) Once this is done, use your torque angle gauge to add an additional 51 degrees of twist to each outer main bolt, again in sequence.

With all M10 main bearing bolts now tight, the main cap side bolts can be addressed. Torque each to 18 ft-lbs; there is no required sequence for these bolts save to say that you should tighten one side bolt and then the other before moving to the next cap. There is also no angle to add to the side bolts. Read “Piston and Connecting Rod Orientation Rules” on page 113 before proceeding. Piston pin retaining clips vary in style; some are c-clips that install with snap ring pliers or similar tools, while others are spiral-type and must be stretched open to ease installation (shown in hand, such a spiral-type lock must then be worked into one side of the piston pin bore by simultaneously rotating and pushing it into its groove). Once you have a clip in one side, lightly lubricate the piston pin as well as the friction surfaces in the piston and rod with clean engine oil. Slide the pin through the bores in the piston and rod until it hits the clip on the far side of the piston. Then install the other clip atop the pin. Make sure these pin retaining clips are fully seated—they’ll normally click when they’re all the way in (a flathead screwdriver comes in handy for this). At this point, we suggest marking the face of each piston with magic marker to correspond with any number previously scribed onto the rod. If no clocking recommendations have been specified, you should follow the ring clocking diagram shown here during the below steps of piston ring installation (compression rings can easily be repositioned once installed on the piston, while oil rings are a little more tricky to slide against one another). The most important thing to note is that the oil control rails must be placed about 1-inch to either side of the expander end gap. Most modern ring packages don’t require precise clocking other than this, but you should still space the end gaps of the top and 2nd rings approximately 180 degrees apart.

Such pistons require installation of an oil ring support, which sits beneath the oil rings and provides the necessary structure in the area of the piston pin. An oil ring support must be installed before any piston rings, and this is most easily done using ring expander pliers. Oil ring supports will often have a dimple (pointing) that must face down in the area of the piston pin bore. This dimple prevents the support from rotating out of place while the engine is running—you do not want the gap in the support entering this area! Install your oil ring expander into the bottom ring groove, which is the wavy-looking ring (it may have a piece of thin wire connecting its ends, like this one). Note that some ends of expanders simply butt together, while others lock in place. Then install one oil ring control rail below the expander and another oil ring rail above the expander. Oil ring control rails are easily installed by hand using a light twist (set one end in and hold it with your thumb), and ring expander pliers are not required. Note that if your piston has a small opening beneath the oil ring groove (near left thumb in second photo), you should move the rail endgaps past this area, i.e., further apart than just the 2:30 and 3:30 positions shown in step 10. Start with the 2nd ring, which sits in the lower of the two compression ring grooves and normally has a duller finish. Use ring expander pliers to expand the ring just enough so that it slips around the piston; too much can damage the ring. If you do not have ring expander pliers, you can use your thumbs to push the end gap apart. Now install the top ring, again making sure to follow the ring manufacturer’s instructions on any bevel or dot placement. Once in their grooves, the compression rings should stick out a bit; this is normal and will help the rings put tension on the cylinder walls.For this reason, it helps to install your crankshaft turning tool (if you have one) onto the crank snout at this point.

Depending on the style of your tool, you may have to install your oil pump drive gear (which may be part of your crank sprocket) onto the crank snout before putting the crank turning tool on—see step 27. Again, if you do not have a crank turning tool, we recommend simply installing your old crank bolt and using a 24mm wrench to turn it. As with main bearings, each bearing shell will have a tab that will fit into a recess in the rod or cap, and the shells must be fully seated with their edges flush with those of the rod or cap. Also note that rod bearing shells are not always the same, and your rod bearings may have a top and a bottom half. This is especially true when using chamfered rod bearings to match high-performance filleted cranks. If this is the case, check the back of the bearing shells, which are often stamped with a “U” or “L,” indicating upper and lower shells. As a double-check, watch that the chamfer in the edge of such a bearing will face the filleted edge of the crank journal (i.e., the chamfer must face the front of the engine on odd-numbered cylinders and the rear of the engine on even-numbered cylinders). Lubricate the bearing shells with assembly lube. Give the appropriate cylinder wall one final cleaning, and lightly lubricate it with clean engine oil using a lint-free towel or assembly wipe. Then turn the crankshaft so that the rod journal for the cylinder you are working on is at its furthest point below that bore (bottom dead center). This will give the most room to guide the rod onto it. Also lubricate the crank rod journal with assembly lube. If you have a tapered-sleeve ring compressor, set it roughly atop the bore. Adjustable sleeve-style ring compressors need to be adjusted until the cylinder liner can no longer be seen around its inner circumference. (Many machine shops make a slight chamfer in the top of the bores to ease ring installation, and you can see this in the first photo).

As for band-style adjustable ring compressors, they should be wrapped snugly (not tightly) around the piston at this time, leaving the piston skirt exposed. Note: Use of band-style “oil filter wrench” compressors that do not lock to a set position is not recommended and can result in ring breakage! Further minor adjustments to adjustable-style ring compressors may be needed so that the piston can slide through it while still holding the rings firmly. When using a sleeve-style compressor, you will probably need to use your fingers and press each compression ring into its groove, to allow it to enter the tapered section of the sleeve (shown in left photo). Shown is a rod hitting a crank counter weight, a common occurrence. Twist the piston as necessary to get the rod at a 90 degree angle to the crank centerline, and you may also need to slide the rod to center it along the piston pin. Failure to correct these problems can destroy the rod or other components! If the piston stops at any point, do not force it. The ring compressor may be improperly adjusted and a ring may be hanging up on the bore lip. Some moderately forceful taps may be needed to get the piston to move, but anything more than this should be a red flag—in which case you’ll need to stop, pull the piston out, and make any necessary adjustments before trying again. Once you are certain the piston is going into the bore properly, reach underneath and begin guiding the end of the rod with one hand while continuing hammer taps with the other (you may remove the ring compressor at this point if you wish). As the rod nears the crank journal, use extreme care, as any part of the rod touching the journal surface could cause a scratch. Hold your hand around the journal with your index finger and thumb, keeping the rod bolt holes centered on either side of the journal (shown, be prepared to get a little lube on your hand).

Once the rod is seated onto the journal, install the rod cap (remember to do so in the correct orientation). On aftermarket rods that use locating dowels, it is recommended that you tap the cap in place using a rubber mallet (in lieu of drawing it down with the bolts) to seat the cap. Either way, install and tighten the bolts until snug.If using aftermarket rods or bolts, follow the tightening procedure specified by the manufacturer, and read “Utilizing Fastener Stretch” below for more information. Flip the engine on its stand so that the oil pan rails are facing up. Then install your torque angle gauge and give each bolt an additional 75 degrees of twist. Mark on or near the bolt so you know you’ve tightened it, then ensure the rod can slide back and forth on the crank journal (if not, the rod bearings may be crooked). Repeat for each connecting rod until you have secured all sixteen rod bolts. The most foolproof way to determine whether your bolts are of this type is to look at the area between the bolt head and the threads: if the bolt has a thick shank with a series of shallow, vestigial threads starting just below the head, it is an early-style bolt. Later-style bolts all had a narrower shank interrupted by a larger-diameter sleeve somewhere between the bolt head and threads (exact location varied). The photo compares an earlier (left) and later-style (right) bolt removed from a rod, but you can have a look now just by loosening the bolts and pulling them out enough to look at the shank. Early- and later-style bolts should never be mixed on the same rod! Torque its retaining bolt to 18 ft-lbs. Make sure you are using the correct sensor for your engine and computer: black sensors are for 24X reluctor rings, while lighter colored sensors are for 58X rings. Take a well-deserved break, but be sure to cover up your engine while you’re gone to prevent contamination from airborne dust, bugs, and other unwelcome substances. Then, move on to the next step.

Before continuing, be sure your hands are very clean, as it will be impossible to avoid contact with the camshaft’s journal and lobe surfaces during installation. The front of the camshaft is recognized by its bolt hole(s) and sprocket locating pin. Continue to insert the cam slowly and carefully (lest you mar the lobes or cam bearings), noting that more and more upward pressure will be required as the cam gets deeper into the block. Once the cam is in, remove the extension(s) or bolt(s), but be careful—the slight backward tilt of most engine stands means the cam may want to slide its way out the back of the block! After wiping the corresponding surface on the front of the block, lubricate the thrust surface of the cam (its outside edge, which is inset slightly) and set the cam retainer in place. Use care not to accidentally push on the cam or it will slip backward and fall onto its lobes. Install the four cam retainer bolts and torque to 18 ft-lbs. If your cam retainer bolts are of a TORX-head design, the specification is 11 ft-lbs. You may have installed your timing set’s crank sprocket onto the crank snout during pre-assembly, but if not, do so now. Spray some lubricant such as WD-40 onto the snout to help this process. Some aftermarket sprockets will simply slide over the snout and only require a few light hammer taps to seat fully on the crank. Factory-style sprockets should be started with light hammer hits, but will need to be pressed on the rest of the way using a crank gear installing sleeve (possibly combined with a harmonic balancer installer tool). The alternative to buying a sleeve is to simply use your old crank sprocket (shown). This method will also require your old crank bolt and is easier and cheaper than buying a special sleeve. Press the sprocket on until it firmly seats against the crank, then remove your old sprocket, it should just come off by hand. If using such components, install the second key at this time as well.

Spin the camshaft by hand until the cam locating pin is facing to the right (roughly 3:00), making sure not to push the cam backward at all. This pin placement will help get the cam sprocket locating mark roughly where it needs to be. Lubricate the thrust surface at the back of the cam sprocket and soak the timing chain in oil. Once this is done, take your cam sprocket and hang your timing chain on it. Reach behind the engine with one hand to hold the cam from moving backward (this also allows you to turn the cam slightly if needed). Put the cam sprocket in place while simultaneously wrapping the timing chain around the crank sprocket. You may have to take the cam sprocket and chain on and off of the engine a few times until you get the marks on the cam and crank sprockets to line up vertically (they should be at 6:00 and 12:00, respectively). Start the cam bolt(s) by hand (some aftermarket timing chains afford very little slack, making this difficult); torque to 18-26 ft-lbs (cams with three small retaining bolts) or 66 ft-lbs plus 40 degrees (cams with one large retaining bolt). It must be tightened to 48 ft-lbs plus 90 degrees. In this case, the tensioner will need to be temporarily deactivated using a pin or similar instrument while the chain and sprocket are put in place.(4) Engines equipped with a timing chain dampener (which sits in the area between the cam and crank sprockets) should install it at this time, torquing its bolts to 18 ft-lbs. Wipe the mating surfaces on the front of the block and back of the oil pump, then set the pump in place over the crank snout. You may have to twist the oil pump’s gear teeth so that they align with the teeth on the crank sprocket (or separate oil pump drive gear). No gaskets or other sealants should be used between the pump and block surfaces. Torque spec on these bolts is 18 ft-lbs. Once the oil pump has been installed, flip the engine over on its stand.

Most aftermarket oil pumps do not require spacers as they are designed with the thickness of a double-roller chain in mind. A straight edge or the GM J 41480 can be helpful in determining this—this is the same tool used to align the front and rear covers to the block (see steps 33-34). The procedure is similar for the LS9. For stock rebuilds, skip to the next step. When using a crankshaft with a larger-than-stock stroke, modifications to your oil deflector tray may be required to obtain adequate rotating clearance. To check for contact between your rotating assembly and the tray, set it loosely in place atop the main bolts and rotate the crank, watching and listening for any interference. Most commonly, this occurs between the tray and the heads of the rod bolts. To correct for this, mark the tray at all points of interference, then take it off of the engine and use a hammer and chisel to bend the tray in these areas. Do not close off any gaps in the tray completely—this will create oil flow problems. Reinstall the tray and ensure you have adequate clearance, noting that some extra space will be necessary to account for crank stretch at high RPM!As an alternative to modifying the oil deflector tray, you may also install a set of aftermarket tray spacers (see “SLP Performance Parts” on page 122), but be aware of the following: because the oil pump pickup tube mounts atop the tray on most engines, some modifications (i.e. slight bending of its bracket) may be required in order to correct for decreased clearance between the pickup tube’s screened inlet and the floor of the oil pan. This is easy to check with clay later during oil pan installation. A final note on oil deflector tray modification is that if you are using aftermarket main studs, they may require some of the holes in the tray to be enlarged slightly, which is easy enough to do with a drill or die grinder. It is a good idea to shoot some oil into the oil pump inlet at this point for initial lubrication.

Install a new O-ring onto the end of the oil pump pickup tube. Coat the O-ring and the oil pump inlet opening with oil, then push the pickup tube into the oil pump. Ensure the tube is all the way in before inserting and tightening the retaining bolt, or else you may damage the O-ring or push it out of position. The retaining bolt gets 106 inch-lbs of torque, while the eight stock deflector tray nuts (one of which also secures the pickup tube bracket) receive 18 ft-lbs. If using aftermarket main studs and tray nuts (as shown here), use the torque specifications provided by the manufacturer. Some tubes neck down near the end before bumping up to a flange. These tubes require a thicker O-ring, which is normally green in color. Other pickup tubes do not neck down and require a thinner (usually blue or black) O-ring; it is this type that is shown in the photos. An incorrect O-ring can cause loss of oil pressure and severe engine damage, so be sure you are using the correct type! A hammer and flathead screwdriver can be used for this, though care must be taken not to score the aluminum surfaces of the covers. GM recommends waiting until the covers are on the engine to install new seals, but this requires special J-tools (which are invariably expensive or hard to get a hold of). The front seal is fairly easily tapped into place about its edges with a rubber mallet; do this slowly and gently or the seal will be destroyed. While the same can be done with the rear seal, you can also use this tool made by now-defunct Wheel to Wheel Power-train (which tightens to squeeze the seal into place, second photo) to make the job more fail-safe. A thin film of oil applied to the engine cover surfaces will help the seals press into place. However, the seals themselves are designed to be installed dry—do not lubricate their inner rubber surfaces.

If you are afraid of botching this step, know that new front and rear covers are available from GMPP with seals pre-installed (see “GM Performance Parts” on page 125 for more information). Set a new gasket in place on the rear cover, using the first couple of threads of each rear cover bolt to hold it there. Wipe off, but do not lubricate, the crankshaft’s rear flange. You must be very careful when sliding the rear cover onto the block, as it is easy for the lips of the rear crank seal to become misaligned while doing this, resulting in an oil leak (updates to GM’s seal design have made this much more foolproof, though). The aforementioned Wheel to Wheel Powertrain tool’s aluminum “donut” helps ease an earlier-style seal’s transition onto the crank. Once all rear cover bolts are started by hand, you have a choice. The first option is to use a GM cover alignment tool (J 41480) to align the rear cover’s cover-to-pan sealing surface with the block’s oil pan rails before torquing the rear cover bolts to 18 ft-lbs. As an alternative, you may visually align the cover-to-pan sealing surface with the pan rails, tighten the bolts, and then verify no more than a 0.020-inch drop between the pan rails and rear cover using a straight edge and feeler gauge (any protrusion of the cover beyond the pan rails is unacceptable). This latter method will usually provide acceptable results since contact between the rear seal and crank flange helps roughly align the cover to the block. This cover is most easily aligned using the same alignment tool used for the rear cover, along with an additional J 41476 tool to help align the cover side-to-side.(This latter tool was not used in the previous step since the rear seal had already been installed and was basically serving the same purpose). Install the J 41476 hand-tight using your old crank bolt before installing the J 41480.

Bike Model Name: 
the exemplary husband a biblical perspective study guide